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Bishop Constructive Mathematics

1967: Bishop’s Foundations of constructive analysis

Two aspects of constructive mathematics Bishop style:

it is fully compatibile with classical mathematics

it is motivated by a computational attitude
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Origins

1970’s: Foundational systems for Bishop–style constructive
mathematics

1 Intuitionistic set theory (Friedman ’73, Myhill ’73)

2 Explicit mathematics (Feferman ’75)

3 Constructive type theory (Martin–Löf ’75)

4 Constructive set theory (Myhill ’75, Aczel ’78)

CZF
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Explicit mathematics and type theory are more faithful to Bishop’s
original motivation of making mathematics more computational

This is reflected by the explicit character of Feferman’s theories
and it is fully exploited in constructive type theory

Operational set theory wishes to combine some aspects of
constructive set theory with some aspects of explicit mathematics
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Constructive set theory

From a classical perspective we can see constructive set theory as
obtained by a double restriction:

Logic: Replacing classical with intuitionistic logic

Further restraints to comply with a form of predicativity
(usually termed generalised predicativity)

There is a fundamental difference with intuitionistic set theory
which is fully impredicative (as it has full separation and powerset)
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Constructive Zermelo Fraenkel set theory

CZF [Aczel78] ZF

1 IFOLE FOLE

2 Extensionality Extensionality

3 Pair Pair

4 Union Union

5 ∆0–separation Separation

6 Fullness Powerset

7 Strong collection Replacement

8 Infinity Infinity

9 Set induction Foundation

IZF
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Theorem [Aczel]: CZF + EM = ZF
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The theory ESTE
Key results I
Key results II
Extensions of ESTE

Constructive operational set theory

Let’s look at the union axiom of CZF:

∀a ∃x ∀y (y ∈ x ↔ ∃z ∈ a y ∈ z)

If we wish to implement CZF we might want to have an operation
un which given the set a produces its union un a

Can we have a constructive set theory where we have operations
together with the usual sets?
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Predecessors

Intuitionistic set theory with rules: [Beeson88]

Classical operational set theory: OST [Feferman06]

Extensions of OST:
[Jaeger07, Jaeger09, Jaeger09, JaegerZumbrunnen11]

Constructive operational set theory: [CantiniCrosilla08,
CantiniCrosilla10, Cantini11, CantiniCrosilla12]
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Constructive Operational Set Theory

Constructions as pairing, union, image, exponentiation, are
perfectly good operations and we wish to represent them
directly in our set theory

We introduce operations as rules next to functions as
set–theoretic graphs

We have a notion of application for operations

Operations are non–extensional while set–theoretic functions
are extensional

There is a limited form of self–application
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The theory ESTE

Language: applicative extension, LO , of the usual first order
language of Zermelo-Fraenkel set theory:

∈, =, ⊥, ∧, ∨, →, ∃, ∀
App (application)

K and S (combinators)

el (membership)

pair , un , im , sep , exp (set operations)

∅, ω (set constants)
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Application terms

We work within a definitional extension of LO with application
terms, defined as usual

(i) Each variable and constant is an application term

(ii) If t, s are application terms then ts is an application term

Abbreviations:

(i) t ' x for t = x when t is a variable or constant

(ii) ts ' x for ∃y ∃z (t ' y ∧ s ' z ∧ App(y , z , x))

(iii) t ↓ for ∃x (t ' x)

(iv) t ' s for ∀x (t ' x ↔ s ' x)

(v) ϕ(t, . . . ) for ∃x (t ' x ∧ ϕ(x , . . . ))

(vi) t1t2 . . . tn for (. . . (t1t2) . . . )tn
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Conventions

A formula of LO is ∆0, iff
(a) all quantifiers occurring in it, if any, are bounded
(b) it does not contain App

Truth values: let ⊥ := ∅ and > = {∅}

The class of truth values: Ω := P> = P{∅}
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Further conventions

f , g , . . . for operations; F ,G , . . . for set–theoretic functions

For a and b sets or classes, write

f : a→ b for ∀x ∈ a (fx ∈ b)

f : V→ b for ∀x (fx ∈ b), where V := {x : x ↓}
f : a2 → b for ∀x ∈ a ∀y ∈ a (fxy ∈ b)

f : V2 → b for ∀x ∀y (fxy ∈ b) etc.
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The theory ESTE

Axioms and rules of first order intuitionistic logic with equality

Extensionality

∀x (x ∈ a↔ x ∈ b)→ a = b

General applicative axioms

App(x , y , z) ∧ App(x , y ,w)→ z = w

Kxy = x ∧ Sxy ↓ ∧Sxyz ' xz(yz)
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Membership operation

el : V2 → Ω and el xy ' > ↔ x ∈ y

Set constructors and Infinity

∀x (x /∈ ∅)

pair ab ↓ ∧∀z (z ∈ pair ab ↔ z = a ∨ z = b)

un a ↓ ∧∀z (z ∈ un a ↔ ∃y ∈ a(z ∈ y))

(f : a→ Ω)→ sep fa ↓ ∧∀x (x ∈ sep fa ↔ x ∈ a ∧ fx ' >)

(f : a→ V )→ (im fa ↓) ∧ ∀x (x ∈ im fa ↔ ∃y ∈ a(x ' fy))

exp ab ↓ ∧∀x(x ∈ exp ab ↔ (Fun(x) ∧ Dom(x) =
a ∧ Ran(x) ⊆ b))

Ind(ω) ∧ ∀z (Ind(z)→ ω ⊆ z)
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(i) For each term t, there exists a term λx .t with free variables
those of t other than x and such that

λx .t ↓ ∧(λx .t)y ' t[x := y ].

(ii) (Second recursion theorem) There exists a term rec with

recf ↓ ∧(recf = e → ex ' fex).
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Extensionality

Extensionality for sets:

∀x (x ∈ a↔ x ∈ b)→ a = b

Extensionality for operations:

∀x (fx ' gx)→ f = g

Question: can operations be extensional?
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Key results: I

Operations are non–extensional: ¬[∀x (fx ' gx)→ f = g ]

Application is partial: ¬∀x ∀y ∃z App(x , y , z)

Bounded separation has to be restricted to formulas not
containing App

The axiom of choice is problematic both for set–theoretic
functions and for operations
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Key results II: Proof–theoretic strength

ESTE has the same proof theoretic strength as PA

Lower bound

HA is interpretable in ESTE

Upper bound

We introduce an auxiliary theory ECST∗ and show that ESTE
reduces to ECST∗ and the latter reduces to PA
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ECSTS

ECST∗ is an extension of Aczel and Rathjen ECST by adding the
exponentiation axiom

ECST is the subtheory of CZF with: extensionality, pair, union,
∆0–separation, replacement, strong infinity

Note: no ∈–induction is allowed
Rathjen: ECST is very weak: no number–theoretic sum
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Upper bound

Reduce ESTE to ECST∗: partial cut elimination and
asymmetric interpretation

Sequent–style formulation of ESTE with active formulas
positive in App
A partial cut elimination theorem holds
Asymmetric interpretation of ESTE into ECST∗

Idea: replace App by its finite stages Appn
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Upper bound

Reduce ECST∗ to PA: we introduce a classical theory of
truth, Tc, of the same strength as PA [Cantini96]

Translate ECST∗ in Tc by a realisability interpretation which
recalls Aczel’s interpretation of CZF in Constructive type
theory
Here we need a separate rule for introducing the natural
numbers (Rathjen’s trick)
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The picture

HA ↪→ ESTE ↪→ ECST∗ ↪→ Tc ↪→ PA
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Friedman’s B

Friedman’s B [Friedman77]: set–theoretic foundation for
constructive mathematics conservative over HA

Proposition: B is interpretable in ESTE + bounded dependent
choice
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Extensions of ESTE

Andrea Cantini [Cantini11] has added a description operator
to ESTE (conservative), and introduced impredicative
extensions of ESTE with unbounded quantifiers and a fixed
point operator
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Transitive Closure

TC: We add an operation τ that applied to a set a produces
its transitive closure, τa
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Transitive Closure

The theory ESTEτ is obtained from ESTE by adding a new
constant τ to the language together with the axiom TC:

(τa↓ ∧ Trans(τa) ∧ a ⊆ τa ∧ (∀c)(Trans(c) ∧ a ⊆ c → τa ⊆ c))

where Trans(z) := (∀x)(∀y)(x ∈ y ∧ y ∈ z → x ∈ z)
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Key results

Theorem

ESTEτ is conservative over ESTE

Idea of the proof: we make essential use of a separation between
sets and natural numbers which is given in our model of the
set–theoretic universe

By using Tc’s axiom GID (Generalised Inductive Definitions) we
can prove a useful induction principle which holds in the model,
and, crucially, is acquired at no cost from a proof–theoretic
perspective
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We use the fixed point theorem of Tc and definition by cases on N
to model the operator τ

τTca =

{
a, provided a is a natural number;

a∪̇
⋃̇

sup(ā, λy .τTc(ãy)), provided a is a set

and use the induction principle to show that the model behaves as
desired
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Thank you!
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