Applicative theories for logarithmical complexity classes

Sebastian Eberhard

Universität Bern

June 4, 2012

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classe

イロト イヨト イヨト イヨト

- Clote, Takeuti: First order bounded arithmetic and small Boolean Circuit Complexity Classes.
- Cantini: Polytime, combinatory logic and positive safe induction
- Kahle, Oitavem: An applicative theory for FPH
- Strahm: Theories with self-application and computational complexity

イロト イポト イヨト イヨト

- LogTime: $x \mapsto |x|$
- LogTH: Addition

- LogTime: $x \mapsto |x|$
- LogTH: Addition
- ALogTime: Multiplication

- LogTime: $x \mapsto |x|$
- LogTH: Addition
- ALogTime: Multiplication

イロト イヨト イヨト イヨト

- LogTime: $x \mapsto |x|$
- LogTH: Addition
- ALogTime: Multiplication

We have LogTime \subseteq LogTH \subset ALogTime \subseteq LogSpace \subseteq PolyTime

- LogTime: $x \mapsto |x|$
- LogTH: Addition
- ALogTime: Multiplication

We have LogTime \subseteq LogTH \subset ALogTime \subseteq LogSpace \subseteq PolyTime

(日) (同) (三) (三)

Function algebra \mathfrak{W}_1 for LogTH

Definition

 \mathfrak{W}_1 contains the following initial functions.

- the constant empty word function.
- the word successor functions.
- projection functions of arbitrary arity.
- the function bit such that bit(i, w) is the *i*-th bit of the word w.
- the function abs such that abs(w) is the length of the word w.
- the function \times where $w \times v$ is the length of v fold concatenation of w with itself.
- the function e where e(w) is the word w without its leading zeros.

イロト イポト イヨト イヨト

 \mathfrak{W}_1 is closed under composition and under the following scheme of concatenation recursion on notation *CRN*. We abbreviate $CRN(g, h_0, h_1)$ by *f*.

Formalise two aspects of CRN:

- $f(S_i(x), \vec{y})$ extends $f(x, \vec{y})$ by one bit.
- Recursion step function is independent of $f(x, \vec{y})$.

 \mathfrak{W}_1 is closed under composition and under the following scheme of concatenation recursion on notation *CRN*. We abbreviate $CRN(g, h_0, h_1)$ by *f*.

Formalise two aspects of *CRN*:

- $f(S_i(x), \vec{y})$ extends $f(x, \vec{y})$ by one bit.
- Recursion step function is independent of $f(x, \vec{y})$.

イロト イポト イヨト イヨト

Definition

A function $F : \mathbb{W}^n \to \mathbb{W}$ is called *provably total in an* L *theory* T, if there exists a closed L term t_F such that

(i) $T \vdash t_F : W^n \rightarrow W$ and, in addition,

(ii) $T \vdash t_F \overline{w}_1 \cdots \overline{w}_n = \overline{F(w_1, \dots, w_n)}$ for all w_1, \dots, w_n in \mathbb{W} .

(日) (同) (日) (日)

The language of LogH

- Combinators: s, k
- Pairing and projection: p, p₀, p₁
- Empty word: ϵ
- \bullet Successor functions: s_0, s_1, s_ℓ
- \bullet Predecessor function: p_W, p_ℓ
- Definition by cases: d_W
- Concatination: *
- \bullet Multiplication: \times
- Length: abs
- Bit: bit
- Eraser: e
- Unary predicate W for (fully accessible) words
- Unary predicate V for temporary inaccessible words

< ロト < 同ト < ヨト < ヨト

Axioms of LogH

- Classical logic.
- The usual defining properties for the constants for inputs in W.
- $x \in W \rightarrow x \in V$
- $x \in V \rightarrow s_i x \in V$
- $x \in V \rightarrow p_W x \in V$
- $\frac{A \rightarrow t \in V}{A \rightarrow t \in W}$, where A is positive, and does not contain V.

Induction

 $\left(\mathsf{LogH}-\mathsf{Ind}\right)$

$$\begin{aligned} (\exists y \in \mathsf{V}) \mathcal{A}[\epsilon, y]) \wedge \\ (\forall x \in \mathsf{W}) (\forall y \in \mathsf{V}) \big(\mathcal{A}[x, y] \to (\mathcal{A}[\mathsf{s}_i x, \mathsf{s}_0 y] \lor \mathcal{A}[\mathsf{s}_i x, \mathsf{s}_1 y]) \big) \to \\ (\forall x \in \mathsf{W}) (\exists y \in \mathsf{V}) \mathcal{A}[x, y], \end{aligned}$$

where A is positive, and W, V and disjunction free.

Effect of allowing disjunctions

 $\begin{array}{l} \mathsf{Assume} \\ (\mathsf{ALogT}-\mathsf{Ind}) \end{array}$

$$\begin{aligned} (\exists y \in \mathsf{V}) \mathcal{A}[\epsilon, y]) \wedge \\ (\forall x \in \mathsf{W}) (\forall y \in \mathsf{V}) \big(\mathcal{A}[x, y] \to \big(\mathcal{A}[\mathsf{s}_i x, \mathsf{s}_0 y] \lor \mathcal{A}[\mathsf{s}_i x, \mathsf{s}_1 y] \big) \big) \to \\ (\forall x \in \mathsf{W}) (\exists y \in \mathsf{V}) \mathcal{A}[x, y], \end{aligned}$$

for A positive, W and V free.

$$s \preceq \overline{11 \cdots 11} := s = \epsilon \lor s = \overline{0} \lor s = \overline{1} \lor s = \overline{00} \lor \cdots \lor s = \overline{11 \cdots 11}$$

We can prove

$$\mathsf{LogH} \vdash s \preceq \overline{11 \cdots 11} \leftrightarrow s \in \mathsf{W} \land s \leq \overline{11 \cdots 11}.$$

 \Rightarrow k bounded recursion can be justified.

イロト イヨト イヨト イヨト

Effect of allowing disjunctions

 $\begin{array}{l} \mathsf{Assume} \\ (\mathsf{ALogT}-\mathsf{Ind}) \end{array}$

$$\begin{aligned} (\exists y \in \mathsf{V}) \mathcal{A}[\epsilon, y]) \wedge \\ (\forall x \in \mathsf{W}) (\forall y \in \mathsf{V}) \big(\mathcal{A}[x, y] \to \big(\mathcal{A}[\mathsf{s}_i x, \mathsf{s}_0 y] \lor \mathcal{A}[\mathsf{s}_i x, \mathsf{s}_1 y] \big) \big) \to \\ (\forall x \in \mathsf{W}) (\exists y \in \mathsf{V}) \mathcal{A}[x, y], \end{aligned}$$

for A positive, W and V free.

$$s \preceq \overline{11 \cdots 11} := s = \epsilon \lor s = \overline{0} \lor s = \overline{1} \lor s = \overline{00} \lor \cdots \lor s = \overline{11 \cdots 11}$$

We can prove

$$\mathsf{LogH} \vdash s \preceq \overline{11 \cdots 11} \leftrightarrow s \in \mathsf{W} \land s \leq \overline{11 \cdots 11}.$$

 \Rightarrow k bounded recursion can be justified.

イロン イロン イヨン イヨン

Proof theoretic strength

Theorem

- The theory LogH (containing (LogTH Ind)) proves totality exactly for the functions in the logarithmic hierarchy.
- The theory LogH extended by (ALogT Ind) proves totality exactly for the functions computable in alternating logarithmic time.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Function algebra for logspace

- Initial functions
- Concatenation recursion
- Sharply bounded recursion:

$$\begin{array}{lcl} f(\epsilon, \vec{y}) & = & g(\vec{y}) | \; |b(\epsilon, \vec{y})| \\ f(\mathsf{S}_i(x), \vec{y}) & = & h_i(x, \vec{y}, f(x, \vec{y}))) | \; |b(\mathsf{S}_i(x), \vec{y})| \end{array}$$

 \Rightarrow allow to access a sharply bounded initial segment.

イロト イヨト イヨト イヨ

Function algebra for logspace

- Initial functions
- Concatenation recursion
- Sharply bounded recursion:

$$\begin{array}{lll} f(\epsilon, \vec{y}) &=& g(\vec{y}) | | b(\epsilon, \vec{y}) | \\ f(\mathsf{S}_i(x), \vec{y}) &=& h_i(x, \vec{y}, f(x, \vec{y}))) | | b(\mathsf{S}_i(x), \vec{y}) | \end{array}$$

 \Rightarrow allow to access a sharply bounded initial segment.

(ロ) (回) (三) (三)

Axioms for V in LogSp

- $x \in W \rightarrow x \in V$
- $x \in V \rightarrow s_i x \in V$
- $x \in V \rightarrow p_W x \in V$

•
$$\frac{A \rightarrow t \in V}{A \rightarrow t \in W}$$
, where A is positive, and does not contain V.

New axiom to access sharply bounded initial segment:

•
$$x \in W \land y \in V \rightarrow y|_{|x|} \in W$$
,

• $A[\epsilon] \land (\forall x \in W)(A[x] \rightarrow A[s_ix]) \rightarrow (\forall x \in W)A[x],$ for A positive and W free.

<ロト <回ト < 回ト < 回ト

The system LogSp

Two sorted function algebra \mathcal{A} corresponding to LogSp

 ${\mathcal A}$ is the analogon of Bellantoni's BC. It is given as follows:

- Initial functions ϵ , s₀, s₁, p_W with safe output and safe input. Initial functions ABS, BIT with normal input and normal output. Initial functions $\pi_i^{n,m}$ (projections) with safe output and both normal and safe inputs. The initial function *init.seg*(x; y) = y|_{|x|} with normal output.
- Closure under ordinary composition

$$f(\vec{x};\vec{y}) = h(\vec{g}(\vec{x};\vec{y});\vec{j}(\vec{x};\vec{y})),$$

where the g_i have normal output. f has the same sort of outputs as h.

• Closure under safe recursion on notation defined as follows

$$f(\vec{x},\epsilon;\vec{y}) := g(\vec{x};\vec{y})$$

$$f(\vec{x},s_iw;\vec{y}) := h_i(\vec{x},w;f(\vec{x},w;\vec{y}),\vec{y}),$$

where g, h_0 , h_1 are elements of Alg with safe output. The f has safe output.

Closure under raising: from f(x;) with safe output obtain f^ν(x;) with normal output.

Treatment of \mathcal{A} in LogSp

Let $F(\vec{x}; \vec{y})$ be a function in A with normal/safe output. Then there exists a closed term t_F such that

• LogSp
$$\vdash \vec{x} \in W, \vec{y} \in V \Rightarrow t_F \vec{x} \vec{y} \in W/V$$

• LogSp $\vdash t_F \overline{w}_1 \cdots \overline{w}_n = \overline{F(w_1, \dots, w_n)}$ for all w_1, \dots, w_n in \mathbb{W} .

Treatment of LogSp in \mathcal{A}

- It is possible to realise LogSp within \mathcal{A} .
 - Realisers of formulas *with* occurrence of W are *normal* arguments of realisation functions.
 - Realisers of formulas *without* occurrence of W are *safe* arguments of realisation functions.
 - Safe inputs have to be inserted component-wise into realisation functions (similarly as in Cantini's treatment of B).

イロト イポト イヨト イヨト

Proof theoretic strength

Theorem

The theory LogSp proves totality exactly for the functions computable in logarithmic space.