
Applicative theories for logarithmical complexity classes

Sebastian Eberhard

Universität Bern

June 4, 2012

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 1 / 17

Related research

Clote, Takeuti: First order bounded arithmetic and small Boolean Circuit
Complexity Classes.

Cantini: Polytime, combinatory logic and positive safe induction

Kahle, Oitavem: An applicative theory for FPH

Strahm: Theories with self-application and computational complexity

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 2 / 17

Important functions within logarithmic complexity classes

LogTime: x 7→ |x |
LogTH: Addition

ALogTime: Multiplication

We have LogTime ⊆ LogTH ⊂ ALogTime ⊆ LogSpace ⊆ PolyTime

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 3 / 17

Important functions within logarithmic complexity classes

LogTime: x 7→ |x |
LogTH: Addition

ALogTime: Multiplication

We have LogTime ⊆ LogTH ⊂ ALogTime ⊆ LogSpace ⊆ PolyTime

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 3 / 17

Important functions within logarithmic complexity classes

LogTime: x 7→ |x |
LogTH: Addition

ALogTime: Multiplication

We have LogTime ⊆ LogTH ⊂ ALogTime ⊆ LogSpace ⊆ PolyTime

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 3 / 17

Important functions within logarithmic complexity classes

LogTime: x 7→ |x |
LogTH: Addition

ALogTime: Multiplication

We have LogTime ⊆ LogTH ⊂ ALogTime ⊆ LogSpace ⊆ PolyTime

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 3 / 17

Important functions within logarithmic complexity classes

LogTime: x 7→ |x |
LogTH: Addition

ALogTime: Multiplication

We have LogTime ⊆ LogTH ⊂ ALogTime ⊆ LogSpace ⊆ PolyTime

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 3 / 17

Function algebra W1 for LogTH

Definition

W1 contains the following initial functions.

the constant empty word function.

the word successor functions.

projection functions of arbitrary arity.

the function bit such that bit(i ,w) is the i-th bit of the word w .

the function abs such that abs(w) is the length of the word w .

the function × where w×v is the length of v fold concatenation of w with
itself.

the function e where e(w) is the word w without its leading zeros.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 4 / 17

Function algebra for LogTH II

W1 is closed under composition and under the following scheme of concatenation
recursion on notation CRN. We abbreviate CRN(g , h0, h1) by f .

f (ε,~y) = g(~y)
f (S0(x), ~y) = SBIT(ε,h0(x,~y))(f (x , ~y))
f (S1(x), ~y) = SBIT(ε,h1(x,~y))(f (x , ~y))

Formalise two aspects of CRN:

f (Si (x), ~y) extends f (x , ~y) by one bit.

Recursion step function is independent of f (x , ~y).

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 5 / 17

Function algebra for LogTH II

W1 is closed under composition and under the following scheme of concatenation
recursion on notation CRN. We abbreviate CRN(g , h0, h1) by f .

f (ε,~y) = g(~y)
f (S0(x), ~y) = SBIT(ε,h0(x,~y))(f (x , ~y))
f (S1(x), ~y) = SBIT(ε,h1(x,~y))(f (x , ~y))

Formalise two aspects of CRN:

f (Si (x), ~y) extends f (x , ~y) by one bit.

Recursion step function is independent of f (x , ~y).

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 5 / 17

Provably total functions

Definition

A function F : Wn →W is called provably total in an L theory T, if there exists a
closed L term tF such that

(i) T ` tF : Wn →W and, in addition,

(ii) T ` tFw1 · · ·wn = F (w1, . . . ,wn) for all w1, . . . ,wn in W.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 6 / 17

The system LogH

The language of LogH

Combinators: s, k

Pairing and projection: p, p0, p1

Empty word: ε

Successor functions: s0, s1, s`

Predecessor function: pW, p`

Definition by cases: dW

Concatination: ∗
Multiplication: ×
Length: abs

Bit: bit

Eraser: e

Unary predicate W for (fully accessible) words

Unary predicate V for temporary inaccessible words

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 7 / 17

The system LogH

Axioms of LogH

Classical logic.

The usual defining properties for the constants for inputs in W.

x ∈W→ x ∈ V

x ∈ V→ six ∈ V

x ∈ V→ pWx ∈ V

A→ t ∈ V

A→ t ∈W
, where A is positive, and does not contain V.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 8 / 17

The system LogH

Induction

(LogH− Ind)

(∃y ∈ V)A[ε, y])∧
(∀x ∈W)(∀y ∈ V)

(
A[x , y]→ (A[six , s0y] ∨ A[six , s1y])

)
→

(∀x ∈W)(∃y ∈ V)A[x , y],

where A is positive, and W, V and disjunction free.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 9 / 17

The system LogH

Effect of allowing disjunctions

Assume
(ALogT− Ind)

(∃y ∈ V)A[ε, y])∧
(∀x ∈W)(∀y ∈ V)

(
A[x , y]→ (A[six , s0y] ∨ A[six , s1y])

)
→

(∀x ∈W)(∃y ∈ V)A[x , y],

for A positive, W and V free.

s � 11 · · · 11 := s = ε ∨ s = 0 ∨ s = 1 ∨ s = 00 ∨ · · · ∨ s = 11 · · · 11

We can prove

LogH ` s � 11 · · · 11↔ s ∈W ∧ s ≤ 11 · · · 11.

⇒ k bounded recursion can be justified.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 10 / 17

The system LogH

Effect of allowing disjunctions

Assume
(ALogT− Ind)

(∃y ∈ V)A[ε, y])∧
(∀x ∈W)(∀y ∈ V)

(
A[x , y]→ (A[six , s0y] ∨ A[six , s1y])

)
→

(∀x ∈W)(∃y ∈ V)A[x , y],

for A positive, W and V free.

s � 11 · · · 11 := s = ε ∨ s = 0 ∨ s = 1 ∨ s = 00 ∨ · · · ∨ s = 11 · · · 11

We can prove

LogH ` s � 11 · · · 11↔ s ∈W ∧ s ≤ 11 · · · 11.

⇒ k bounded recursion can be justified.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 10 / 17

The system LogH

Proof theoretic strength

Theorem

The theory LogH (containing (LogTH− Ind)) proves totality exactly for the
functions in the logarithmic hierarchy.

The theory LogH extended by (ALogT− Ind) proves totality exactly for the
functions computable in alternating logarithmic time.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 11 / 17

A theory for logarithmic space

Function algebra for logspace

Initial functions

Concatenation recursion

Sharply bounded recursion:

f (ε,~y) = g(~y)| |b(ε,~y)|
f (Si (x), ~y) = hi (x , ~y , f (x , ~y)))| |b(Si (x), ~y)|

⇒ allow to access a sharply bounded initial segment.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 12 / 17

A theory for logarithmic space

Function algebra for logspace

Initial functions

Concatenation recursion

Sharply bounded recursion:

f (ε,~y) = g(~y)| |b(ε,~y)|
f (Si (x), ~y) = hi (x , ~y , f (x , ~y)))| |b(Si (x), ~y)|

⇒ allow to access a sharply bounded initial segment.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 12 / 17

The system LogSp

Axioms for V in LogSp

x ∈W→ x ∈ V

x ∈ V→ six ∈ V

x ∈ V→ pWx ∈ V

A→ t ∈ V

A→ t ∈W
, where A is positive, and does not contain V.

New axiom to access sharply bounded initial segment:

x ∈W ∧ y ∈ V→ y ||x| ∈W,

A[ε] ∧ (∀x ∈W)(A[x]→ A[six])→ (∀x ∈W)A[x],
for A positive and W free.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 13 / 17

The system LogSp

Two sorted function algebra A corresponding to LogSp

A is the analogon of Bellantoni’s BC . It is given as follows:

Initial functions ε , s0, s1, pW with safe output and safe input. Initial
functions ABS, BIT with normal input and normal output. Initial functions
πn,m

i (projections) with safe output and both normal and safe inputs. The
initial function init.seg(x ; y) = y ||x| with normal output.

Closure under ordinary composition

f (~x ;~y) = h(~g(~x ;~y);~j(~x ;~y)),

where the gi have normal output. f has the same sort of outputs as h.

Closure under safe recursion on notation defined as follows

f (~x , ε;~y) := g(~x ;~y)

f (~x , siw ;~y) := hi (~x ,w ; f (~x ,w ;~y), ~y),

where g , h0, h1 are elements of Alg with safe output. The f has safe output.

Closure under raising: from f (~x ;) with safe output obtain f ν(~x ;) with
normal output.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 14 / 17

The system LogSp

Treatment of A in LogSp

Let F (~x ;~y) be a function in A with normal/safe output. Then there exists a
closed term tF such that

LogSp ` ~x ∈W, ~y ∈ V⇒ tF~x~y ∈W/V

LogSp ` tFw1 · · ·wn = F (w1, . . . ,wn) for all w1, . . . ,wn in W.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 15 / 17

The system LogSp

Treatment of LogSp in A

It is possible to realise LogSp within A.

Realisers of formulas with occurrence of W are normal arguments of
realisation functions.

Realisers of formulas without occurrence of W are safe arguments of
realisation functions.

Safe inputs have to be inserted component-wise into realisation functions
(similarly as in Cantini’s treatment of B).

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 16 / 17

The system LogSp

Proof theoretic strength

Theorem

The theory LogSp proves totality exactly for the functions computable in
logarithmic space.

Sebastian Eberhard (Universität Bern) Applicative theories for logarithmical complexity classes June 4, 2012 17 / 17

	The system LogH
	A theory for logarithmic space
	The system LogSp

